CHAPTER

Integrated models®

Chapter outline

20.1 Introduction ccccscecceersecemssssisisissssissasnnsannntasansnnsersenasessssiEisisuatEsrasanssssasarasusannnnsnrarasassassi 473
20.2 Data generation: simulating three abundance data sets with different observation/aggregation models479
20.3 Fitting models to the three individual data sets firstccccccrrircmrrscccnennscnre s 481
20.3.1 Fitting a standard Poisson GLM in R and JAGS todataset 1coovviviiiiininiiiiinnnnnn. 481
20.3.2 Fitting the zero-truncated Poisson GLM in R and JAGS todataset 2 cccoovcceeiiiieiiiinnine 483
20.3.3 Fitting the cloglog Bernoulli GLM in R and JAGS todataset 3 ocooiiiiiiiiiniinncnn, 485
20.4 Fitting the integrated model to all three data sets simultaneouslycccccrvvenismicsniicnncncnnnns 487
20.4.1 Fitting the IM with a DIY likelihood functioncoiiiiiiiiiii e 487
20.4.2 Fitting the IM With JAGS ..ooiiiiiiiiiieeiee e e 488
20.4.3 Fitting the IM with NIMBLE ..oiiiiiiiiiiiiiiieieee v s 489
20.4.4 Fitting the IM with STan ..o 489
20.4.5 Fitting the IM With TMB ..ooiiiiiiiiii i s 491
20.4.6 Comparison of the parameter estimates for the IM ciiiiiiiiiii 492
20.5 What do we gain by analyzing the joint likelihood in our analysis?cccccrivimminscnnisncnnniinene 492
20.6 Summary and OURIOOK coocecorcriiisiscscemr e s rr s s e s e e e e s s sssmcn s e e n e anm s n s e e am e e e s e e e e e e nnnnnn 494

20.1 Introduction

Throughout this book, we have stressed the role of the generalized linear model (GLM) as a funda-
mental building block in parametric statistical modeling. Sometimes a modeling problem may be
simple enough so that a GLM may be what you need. However, often we want to accommodate
additional latent structure in the data and for this invoke latent variables or random effects, either
in the simpler mixed models of Chapters 7, 10, 14, and 17 or in the form of a more general hierar-
chical model as for instance in Chapters 19 and 19B. Either type of hierarchical model can be
viewed as the combination of two or more GLMs that are linked in sequence. That is, the latent
response of one random process appears in the model for another response which may be latent or
observed, and these subprocesses are organized according to conditional probability (Royle &
Dorazio, 2008; Cressie et al., 2009; Hobbs & Hooten, 2015; Hooten & Hefley, 2019).

In this final modeling chapter in the book, we show another way in which we may combine multiple
GLMs to build a more complex model. In this class of model, the component GLMs are not necessarily
arrayed in sequence, as in a hierarchical model, but rather branch off from some shared underlying compo-
nent. These are models that combine the information contained in multiple and disparate data sets. We call

®This book has a companion website hosting complementary materials, including all code for download.
Visit this URL to access it: https://www.elsevier.com/books-and-journals/book-companion/9780443137150.

Applied Statistical Modelling for Ecologists. DOI: https://doi.org/10.1016/B978-0-443-13715-0.00001-7
© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar technologies. 473

474 Chapter 20 Integrated models

them integrated models (IMs), because they integrate (or combine, fuse, assimilate) the ipformation in mul-
tiple data sets. In contrast to a repeated-measures design as with an occupancy- or N-mixture model, in an
IM there is always some degree of disparity in the different modeled data. That is, we have multiple data
sets that each contain information about a shared process with one or more shared parameters. However, at
first it may not be evident how to formally combine them in a single model. Our task then in developing an
IM is (1) to identify the shared process and shared parameters and (2) write a model, or develop a likeli-
hood, that links these shared parameters with the different types of observations in each data set.

Most of the time in an IM, one or more parameters in the latent state process are shared, and then
we define different observation models for each data set. “Observation model” here must be understood
in a broad sense. For instance, the underlying state may be population abundance, and the different data
sets may be produced by a distance-sampling, removal-sampling, or capture-recapture protocol (Royle
& Dorazio, 2008), at different spatial or temporal observation scales (requiring change-of-support
modeling, Pacifici et al., 2019), or by various truncation, censoring, or aggregation processes.

IMs have become a mega-trend in ecological statistics during the past 30 years, e.g., in demo-
graphic estimation, population modeling, species distribution modeling, or movement modeling; for
reviews, see Schaub & Abadi (2011), Maunder & Punt (2013), Zipkin & Saunders (2018), Miller
et al. (2019), chapter 10 in Kéry & Royle (2021), and Schaub & Kéry (2022). The principles of
IMs in these different subfields are very similar, but this is arguably not as widely understood as it
should be, and IMs in each field are often viewed as something separate. Probably the most widely
popularized kind of IM in ecology has been integrated population models (IPMs; Besbeas et al.,
2002; Schaub & Kéry, 2022; Schaub et al., 2024). However, IPMs are really just a special case of
IMs in general, which all share the same basic building principles.

Fig. 20.1 shows the typical case of an integrated species distribution model (SDM) (IM;) and of an
IPM (IM,). In the former, we typically have a single shared parameter (f), e.g., an abundance intensity
in a point process model (Dorazio, 2014; Koshkina et al., 2017), expected abundance (Zipkin et al.,
2017), or occupancy probability (Landau et al., 2022). The typical setting of an IPM is where we have
a time series of population counts (datal), which contains information about all components of popula-
tion dynamics including initial density (), survival (¢), and recruitment (), and then add anotl.ler data
set, for example, a capture—recapture data set, which contains only information about the survival ()
part of population dynamics (Besbeas et al., 2002).

data,

IM 0 —_—
1 o data,

2 w
IMZ ¢’ Vi A ——u)-l—b dat31
2, data,

FIGURE 20.1

Schema of two kinds of integrated models where two disparate data sets inform about the same (or part of
the same) underlying process (gray box) with shared parameter(s) shown in red (In IM;, both data sets are
informative about the same parameter(s) in the shared process, while in IM; data set 1 contains information
about all three parameters, but data set 2 only about ¢, which is the shared parameter. The arrows each
denote a data-set-specific observation process, or likelihood, with parameters that are usually not shared
(modified from Fig. 10.1 in Kéry & Royle, 2021).

N =

20.1 Introduction 475

In the context of SDMs, Pacifici et al. (2017) have discussed three different ways in which the
information in different data sets may be combined and which they call the “covariate,” “correla-
tion,” and “shared” approaches. The last one is what we here call an IM, and it consists in defining
a joint likelihood for all parameters that govern the probability densities of all data sets. Under the
simplifying assumption of statistical independence among the data sets, this joint likelihood is sim-
ply the product of the likelihoods of each individual data set, exactly analogous to how the likeli-
hood of all the data points in a single data set is, under independence, just the product of the
densities of each data point, as we have seen throughout the book. Maximizing the joint likelihood
then identifies parameter values that are most likely for all data sets simultaneously.

Why should we build IMs? There are three good reasons for this: (1) It just makes tremendous
sense to use all the information that is available in some estimation task. (2) More data sets can be
viewed as akin to a larger sample size. Thus, it will not come as a surprise that parameter estimates
in an IM are usually more precise than those obtained from each component data set individually.
(3) Depending on the model and the kinds of data that are combined, parameters may become esti-
mable in the IM which may not be identifiable from each data set alone (Schaub & Kéry, 2022).

But should we always build an IM when we have several data sets that we feel contain informa-
tion about something shared? Our answer here would be, as so often, that it depends. Most of the
times we would probably try to exploit the information of all data sets in an IM, but not always.
For instance, in the context of an IPM, if you’re most interested just in the population trends, then
a simpler model applied only to the population count data may be more what you want. In contrast,
if you’re most interested in obtaining estimates of survival rates, then a Cormack-Jolly-Seber model
(chapter 7 in Kéry & Schaub, 2012) applied to the capture-recapture data alone may be most
appropriate for you. Building an IM incurs a cost: more parameters must be included in the model
(typically in the observation models for each data set) and if the information about the target
parameter is weak in an additional data set, then the inclusion of that data set in an IM may not be
warranted.

Our goal in the rest of this chapter will be to examine the key features of an IM and to under-
stand the principles of how we can build such a model. For this, we will develop an IM which is a
very simple example of an SDM. We assume we have three data sets that contain information about
spatial patterns in the distribution or abundance of common swifts (Fig. 20.2) in some region. Data
set 1 comprises regular counts, but the other two data sets suffer from some loss of information rel-
ative to regular counts. In data set 2, we assume that the lazy bird-watchers had “forgotten” to
record the nondetections and only recorded counts equal to 1 or greater. Such data are called zero
truncated (ZT), since no zeroes occur in the data set. In data set 3, we only distinguish between a
count of 0 (a nondetection) and a count of 1 or greater (i.e., a detection). In other words, these are
what many people call “presence/absence data” and, statistically speaking, can also be called counts
that are censored at 1. This chapter builds partly on Section 2.8 in Schaub & Kéry (2022).

Normally, our preference would be for an SDM that contains an explicit representation of the
false-negative errors that always occur when collecting such data in the field. That is, for a type of
occupancy or N-mixture model as shown in Chapters 19 and 19B. However, to introduce the ideas
of IMs in a setting as simple as possible, we here ignore this complication of reality and assume
that either detection probability is perfect or else that it does not covary with our comparison of
interest, which will be an elevation gradient in abundance, and that we are happy with inferences
about apparent or relative abundance.

476 Chapter 20 Integrated models

FIGURE 20.2

A flock of common swifts (Apus apus) above the village of Glovelier, Swiss Jura mountains (Photo by Alain Georgy).

We will also make another assumption: that the three data sets we work with are statistically inde-
pendent. Independence in IMs is a somewhat elusive concept. It has often been defined as meaning that
no (or only few) individuals, or sites, are shared among the data sets to be combined in an IM (Besbeas
et al., 2009; Abadi et al., 2010; Schaub & Kéry, 2022). Such “lack of sampling overlap” may often be
a suitable indicator for statistical independence of the data sets, but may not be enough. Statistically
speaking, independence is defined such that the joint density of some data sets is given by the product
of the (joint) densities of the individual data sets (Blitzstein & Hwang, 2019). Independence in the con-
text of an IM, the consequences of its violation, and the proper accommodation of nonindependence are
areas of ongoing research (Besbeas et al., 2009; Abadi et al., 2010; Plard et al., 2021; Weegman et al.,
2021; Schaub & Kéry, 2022; Barraquand et al., 2024). Here, we will assume that the three sets contain
distinct sets of sites and thus will index sites with i, j, and k below. However, if there was some or
even complete overlap among sites, then this could also be accommodated in an IM.

As a starting point, we might think that natural probability models for data sets 1 and 2 would be a
Poisson GLLM and a Bernoulli GLM with logit link (i.e., a logistic regression) for data set 3. Thus, in data
set 1, for the count yf-l) at site #, and where we indicate the data set by a superscript, we could write:

yl(-l) ~ Poisson(\;)
log(\) =V + 8V - elev;

20.1 Introduction 477

Here, the elevation of site i affects the expected, or mean, count A through a log-linear model
with the two parameters ol and 3. Note that we like to simulate the effects of a covariate in our
models in this chapter, but the data integration in this chapter would work just as well with a sim-
pler intercept-only model.

As for data set 2, we might want to fit the same model also to the zero-truncated counts. But
this would be wrong, since this would fail to account for the fact that zeros cannot be observed
from the process that produced these data. Thus, the parameters estimated in such a naive appli-
cation of a Poisson GLM to the zero-truncated data would not be comparable to the parameters
estimated from the model for the "intact" data set 1. A proper probability model for the ZT
Poisson data must recognize that zero is not in the sample space of the random experiment that
produces data set 2. Thus, the proper probability mass function for the ZT data set 2 is a Poisson
probability mass function (PMF) for counts >0 that we must renormalize using the sum of the
probability of all possible outcomes, that is, of the nonzero counts only. Doing this ensures that
the PMF sums to 1 over all possible outcomes, as required for a valid PMF. Once we do this, we
can again go on to model the expected zero-truncated count with the same linear predictor as in
the model for data set 1.

Let’s look at this in algebra. The regular Poisson PMF is p(y|\) = Xe™*/y! (see Section 2.2.2.).
The probability for a zero observation is p(0|\)=\’¢~/0! which simplifies to p(y=0|X)=¢"".
Thus, the probability of a nonzero observation is p(y>0[|\) =1 — ¢, Therefore, the PMF of the
ZT Poisson is p(y|\) = e /(1 — e)y!). Below, we will implement this custom PMF for our do-
it-yourself (DIY)-MLE:s.

For data set 3, the binary detection/nondetection data yf) at site k, we might write:

v ~ Bernoulli(1),)
logit(yy) = o + 8% . elev,

Here, we model occurrence, or relative occupancy, probability on the logit scale as a linear
function of site elevation, with parameters a® and 5(3).

Both the Poisson GLMs (with and without zero truncation) and the Bernoulli GLM offer a valid
characterization of the spatial variation of the distribution of the study species: one in terms of rela-
tive abundance here denoted A (Johnson, 2008) and the other in terms of relative occupancy proba-
bility here denoted 1) (Kéry, 2011). Note that the terms “relative” or “apparent” mean that true
abundance or occurrence is confounded with imperfect detection, as described above. Intuitively, it
seems obvious that patterns of occurrence also contain a signal of the underlying patterns of abun-
dance. But would there be a possibility of combining the two models, for abundance and for occur-
rence, and thereby make use of all information about abundance that our data sets contain?

Key to data integration using a joint likelihood is always that you must describe the data sets
using some “common currency.” That is, with at least one parameter that is shared among two or
more of the data sets combined. In our case, we can recognize that the detection/nondetection data
are simply an information-poor variant of counts: they only distinguish between a count of 0 and
one that is 1 or greater, or they are censored at 1. Thus, we can express the detection/nondetection
data as a summary of an underlying abundance process. There are multiple ways in which such a
link between abundance and the binary detection/nondetection data can be formulated (Royle &
Dorazio, 2008). Here, we specify the linkage via that vastly underused link function for Bernoulli

478 Chapter 20 Integrated models

or binomial data: the complementary log-log or cloglog link (Section 3.3.6 in Kéry & Royle, 2016;
Scharf et al., 2022). As we will see, by specifying that link function for the apparent occurrence
probability ¢ in the model for the binary detection/nondetection data, we describe these binary data
in terms of an underlying Poisson abundance process. Thus, the parameters in the linear model for
1 on the cloglog scale will describe the log-linear covariate relationship for the expectation of an
assumed Poisson random variable that underlies the binary data.

Does this sound like magic? Well, we think it does a little ... but let’s look at this with algebra,
When we model the binary data as a summary of an underlying abundance or count, then the
Bernoulli parameter is the probability to obtain a count greater than 0 under a Poisson abundance
model. From the Poisson PMF, we can express this as

Y=Ply=1)=P(N>0)=1—-P(N=0)=1-exp(=N).

We could specify this relationship simply as a link function in a GLM, but for your understanding it is
useful to derive the complementary log-log link by hand. Specification of a linear model for a Bernoulli
parameter at the scale of a cloglog link transformation, that is, cloglog(v) = log(—log(1 — %)), is equivalent
to modeling linear effects in log(), which we can see by making the following re-arrangements:

¥ =1-—exp(—2), and therefore

exp(—A) =1 -1, therefore

log(exp(—2A)) =log(1 — 1), therefore

—A=log(1 —1), therefore

A= —log(1 —), and therefore we finally get this:

log()) =log(~log(1 —1)).

What we have on the right-hand side of the last line is the cloglog transformation for occupancy
probability 1.

Thus, for our three SDM data sets we have achieved the two typical tasks in integrated model-
ing: (1) we have identified abundance () as a shared process underlying all three, and (2) we have
chosen observation models for the three such that the response data in each are formally linked to
this underlying, shared process.

We will simulate three data sets as just described by first simulating three sets of Poisson ran-
dom variables. The first one will be left unchanged and will be our data set 1. In the second set, we
will toss out all zeros and the remainder will be our data set 2. Finally, we quantize (or censor at 1)
the third set resulting in detection/nondetection data; this will become our data set 3.

Then, we will do what is always a wise approach in an IM: fit the component models first to each
data set alone. We will do this using canned functions (when available) in R, with a DIY likelihood
function that we maximize with optim (), and with JAGS for Bayesian posterior inference. This will
help us understand the full model, since to understand an IM, you must also understand all of its com-
ponent models. In addition, since it is so easy to make coding mistakes, it is always good to build up
more complex code from smaller sets of code that you think work correctly. Finally, strong changes in
parameter estimates between the simple and the IM may indicate some problem.

Regardless of whether we fit an IM by maximum likelihood or by Bayesian posterior inference, we
work with the same joint likelihood, which is the product of the likelihoods of each individual data set
(under the important assumption of statistical independence!). The magic especially of BUGS-language
software for IMs is that these models are trivially easy to specify: within the same model statement we

20.2 Data generation: simulating three abundance data sets 479

simply describe the likelihood for each data set and then define one or more shared parameters that
have the same name and meaning in two or more of these component models. The wonderful ease of
fitting even complex IMs in the BUGS language is the main reason for why Bayesian posterior infer-
ence has become the dominant mode of inference for IPMs (Schaub & Kéry, 2022). However, the con-
cept of the joint likelihood as a product of the likelihoods of the individual data sets is buried
somewhat in the Bayesian approach to fitting these models. In contrast, when doing likelihood infer-
ence, we will explicitly define the joint likelihood as such a product. Thus, it is conceptually valuable
to see the IM fit in both ways. This is what we do in Section 20.4.

20.2 Data generation: simulating three abundance data sets with
different observation/aggregation models

We start by simulating three count data sets with identical parameters for a log-linear regression of
the expected counts on a covariate “elevation.” Then, we degrade the information in data sets 2
(truncated Poisson) and 3 (detection/nondetection) by, respectively, discarding all zeroes and one-
censoring the counts so they become binary detection/nondetections, or DND data. In real life, both
of these “degraded” data types are logistically cheaper to obtain. Hence, we assume we have regu-
lar counts from 500 sites, zero-truncated counts from 1000 and detection/nondetection data from
2000. We sort the covariate values within each data set, which has no effect on the calculations,
but makes plotting easier (Fig. 20.3).

Data sets 1 and 2 Data set 3
’ 1.0
s
154 ° .0
e 5 0.8
° ° Q
o® o0 ° %
£ 104" Ay
8 C
@) . c04-
o je]
54 WPee & o °
00q 90 ° %S o0 o Q 02 _
00 o [)]
®e O .
Q= 0.0- PR o N &
" 500 1000 1500 2000 " 500 1000 1500 2000
Elevation (m) Elevation (m)
FIGURE 20.3

Simulated count (left) and detection/nondetection data (right) as a function of elevation. Original data are
Poisson counts (left) with 500 sites in data set 1 (black) and 1000 sites minus 272 Poisson zeroes in the
zero-truncated data set 2 (gray) and where the common expectation as a function of elevation is shown by
the red curve. The detection/nondetection data (right) stem from 2000 sites. In the integrated model, we
combine all three data sets in a single expression for the abundance-elevation relationship.

PSRRI
20.3 Fitting models to the three individual data sets first 481

T AR
480 Chapter 20 Integrated models

set.seed(20) # Plot counts
library(scales)

ulate ‘the: two-idal sets and plof them) par (mfrow = c(1, 2), mar =c(5, 5, 4, 1), cex =1.2, cex.lab= 1.5, cex.axis = 1.5, las = 1)
Choose sample size and parameter values for both data sets [plot (elev2[C2>0], jitter(ztC2), pch = 16, xlab = 'Elevation (m)', ylab = 'Counts',
ns::Ltesl <- 500 # Sample s.ize for count data frame = FALSE, ylim = range(c(Cl, ztC2)), col = alpha('grey80', 1), main = 'Data sets 1 and 2')
ns%tes2 <- 1000 # Sample sllze for zerojtruncated cc?unts points (elevl, jitter(Cl), pch = 16)

nsites3 <- 2000 # Sample size for detection/nondetection data lines(200:2000, exp(log(2) -2 * ((200:2000)-1000)/1000), col = 'red', lty =1, lwd = 2)
mean.lam <- 2 # Average expected abundance (lambda) per site axis(l, at = c(250, 750, 1250, 1750), tcl = -0.25, labels = NA)

beta <- -2 ¥ CoeFCioient 6f SLevAEIan. SOUIRats G lanbdy plot (elev3, jitter(y, amount = 0.04), xlab = 'Elevation (m)', ylab = 'Detection/nondetection’,
truth <- c("log.lam" = log(mean.lam), "beta" = beta) # Save truth

axes = FALSE, pch =16, col = alpha('grey60', 0.3), main = 'Data set 3')
axis (1)
axis(l, at = c(250, 750, 1250, 1750), tcl = -0.25, labels = NA)
axis(2, at =c(0, 1), labels =c(0, 1))

Simulate elevation covariate for all three and standardize to mean of 1000 and

standard deviation also of 1000 m

elevl <- sort(runif (nsitesl, 200, 2000)) # Imagine 200-2000 m a.s.l.

elev2 <- sort(runif(nsites2, 200, 2000)) # Required libraries

elev3 <- sort(runif (nsites3, 200, 2000)) library (ASMbook); library(jagsUI); library(rstan); library (TMB)
selevl <- (elevl - 1000)/1000 # Scaled elevl

selev2 <- (elev2 - 1000)/1000 # Scaled elev2

selev3 <~ (elev3 - 1000)/1000 # Scaled elev3

20.3 Fitting models to the three individual data sets first

Create three regular count data sets with log-linear effects

Cl <- rpois(nsitesl, exp(log(mean.lam) + beta * selevl)) In an IM, we will virtually always fit the component models to each individual data set first. We
C2 <- rpois(nsites2, exp(log(mean.lam) + beta * selev2)) do this here, obtaining both DIY-MLEs in R and Bayesian posterior inference in JAGS. We also
€3 <= rpois(nsites3, exp(log(mean.lam) + beta * selev3)) : use canned functions in R where available.

table (C1) # Tabulate data set 1 '

c1 ‘ 20.3.1 Fitting a standard Poisson GLM in R and JAGS to data set 1

0 1 2 3 4 S 6 S 8 9 10 11 12 13 14 15 18

150 97 62 38 39 29 21 22 11 11 6 3 5 5 5 1 1 ‘ We start by fitting a Poisson GLM to data set 1 to see how well we can recover the two parameters of

the abundance model. We do this with the iteratively reweighted least-squares method in R, which
Create data set 2 (C2) by zero-truncating (discard all zeroes) yields the MLEs for these models. We find estimates that are pretty close to the known truth.
ztC2 <- C2 # Make a copy ‘
ztC2 <- ztC2[ztC2 > 0] # Tossing out zeroes yields zero-truncated data |

Data

table (C2); table(ztC2) # tabulate both original and ZT data set = Bek h log link for counts
summary (fml <- glm(Cl ~ selevl, family = poisson(link = "log")))

c2 exp (coef (fml) [1]) # Estimate of lambda on natural scale from counts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18
272 204 136 105 59 56 43 35 36 15 16 10 6 4 1 1 1 Coefficients:
2t C2 Estimate Std. Error z value Pr(>|zl)

1 2 3 4 5 6 7 8 9 10 ili 5. 12 13 14 15 18 (Intercept) 0.69493 0.03668 18.94 <2e-16 ***
204 136 105 59 56 43 35 36 15 16 10 6 4 1 1 1 ‘ selevl -1.96130 0.06700 -29.27 <2e-16 ***

|
))) | (Intercept)
Turn count data set 3 (C3) into detection/nondetection data (y) 2.003559
¥y < C3 # Make a copy
yly > 1] < 1 # Squash to binary Next, our DIY likelihood solution for the regular Poisson counts.
table (C3) ; table(y) # tabulate both original counts and DND
Definition of negative log-likelihood (NLL) for Poisson GLM

Cc3 NLL1l <- function (param, y, x) {

0 1 2 8 4 5 6 7 8 9 10 11 12 13 14 15 16 17 i alpha <- param[1]
528 428 288 175 140 101 70 68 51 56 36 28 14 8 4 2 2 1 beta <~ param[2]
Y lambda <- exp (alpha + beta * x)

0 1 LL <- dpois(y, lambda, log = TRUE) # LL contribution for each datum
528 1472 return (-sum(LL)) # NLL for all data

T T

R R
482 Chapter 20 Integrated models

20.3 Fitting models to the three individual data sets first 483

crutn w n Ke - ns

truth, tmpl[,1:2], outl$summary([2:3, 1:2])

omp

Minimize NLL comp <- cbind(truth =

inits <- c(alpha = 0, beta = 0) # Need to provide initial values colnames (comp) [3:5] <- c("SE(MLE)", "Post.mean", "Post.sd")
soll <~ optim(inits, NLL1l, y =Cl, x = selevl, hessian = TRUE, method = 'BFGS') print (comp, 3)
tmpl <- get MLE(soll, 4)

MLE ASE LCL.95 UCL. 95 truth MLE SE (MLE) Post.mean Post.sd
alpha 0.6949 0.03668 0.623 0.7668 log.lam 0.693 0.695 0.0367 0.694 0.0362
beta ~1.9613 0.06700 -2.093 ~1.8300 beta -2, 000 ~1:961 0.0670 -1.960 0.0669

We find practically matching estimates, as we would expect for this simple model, our use of

Next, the same in JAGS ...)
vague priors, and the large sample size.

Bundle data
str(bdata <- list(Cl = Cl, nsitesl = nsitesl, selevl = selevl))

20.3.2 Fitting the zero-truncated Poisson GLM in R and JAGS to data set 2

Next, we want to fit the same model to the zero-truncated data set (number 2). This model could
be fit using R package VGAM (Yee et al., 2008), but here we just define the zero-truncated Poisson
likelihood function ourselves and maximize it. This likelihood is formed as a re-normalized

List of 3

$ Cl : int [1:500] 8 7 6 8 12 1858 7 8 ...

$ nsitesl: num 500

$ selevl : num [1:500] —-0.8 —0.797 —-0.795 —-0.788 —0.782 ...

WZ;”‘I — “g“"‘f’ll f*'l’e . ‘ Poisson likelihood without the zero class. That is, we must divide the standard Poisson PMF by
cat (file = "modell.txt"' N - o 58
aded | y 1 minus the probability of a zero count under that same PMF. The latter bit is the total probability
% Prisrs and dineas models of the zero-truncated random variable under the Poisson with same parameters.
alpha ~ dunif (-10, 10) # Abundance intercept on log scale
¢ Definition of amative lea-1i NLI T he sson GLM
mean.lam <- exp(alpha) # Abundance intercept on natural scale # Definition \..ﬂ: negative log son GLM
beta ~ dnorm(0, 0.0001) # Slope on elevation , NLLZ <- function(param, y, X) {
alpha <- param[1l]
Likelihood for data set 1 | beta <- param[2]
for (i in l:nsitesl) { lambda <- exp(alpha + beta * x)
Cl[i] ~ dpois(lambdalli]) L <- dpois(y, lambda)/(l-ppois (0, lambda)) # L. contribution for each datum
log(lambdal[i]) <- alpha + beta * selevl[i] return (-sum(log(L))) # NLL for all data
} }
"y # Minimize NLL
o) inits <- c(alpha = 0, beta = 0) # Need to provide initial values
Initial values sol2 <- optim(inits, NLL2, y = ztC2, x = selev2[C2>0], hessian = TRUE, method = 'BFGS"')
inits <- function(){list(alpha = runif(l), beta = rnorm(l))} tmp2 <- get MLE (sol2, 4)
Parameters nitored
srameters monitored MLE ASE LCL.95 UCL.95
paFans S glimewm., lamt, Talpaat, “hecEt) alpha 0.6461 0.03852 0.5706 0.7216
MCMC settings beta -2.0351 0.07089 -2.1740 -1.8961
ni <- 6000; nb <~ 2000; nc <- 4; nt <~ 4; na <- 1000
As an aside, we quickly compare with the solution when we ignore the truncation and errone-
Call JAGS from R (ART <1 min), check convergence and summarize posteriors ously fit the regular Poisson model. We see that we greatly overestimate abundance when we
ouEl. <= Jegs(detay dnihs, pemavs, “melsll. By n.dtes = oy obooein S oby D.shEios = oy ignore the zero truncation by fitting a standard Poisson distribution to the zero-truncated data.
n.thin = nt, n.adapt = na, parallel = TRUE)
jagsUI::traceplot (outl) # Not shown # Mini e 'wr Po NLL which ignores the zero truncation

sol2a <- optim(inits, NLL1, y = ztC2, x = selev2[C2>0], hessian = TRUE, method = 'BFGS')
get MLE (sol2a, 4)

print (outl, 4)

mean sd 2.5% 50% 97.5% overlapO Rhat n.eff

£
mean.lam 2.0034 0.0725 1.8620 2.0034 2.1476 FALSE 1 1.0006 3371 BLE ASE LCL.95 UCL.95
alpha 0.6942 0.0362 0.6216 0.6949 0.7643 FALSE 1 1.0006 3541 alphs 0.7276 @.02755 0.8736 D.0816
beta -1.9599 0.0669 -2.0910 -1.9589 -1.8311 FALSE 1 0.9999 4000 beta -1.5275 0.05402 =1.H334 =1.4218

484 Chapter 20 Integrated models

rcepts of right and wrong Poisson NLL on the natural scale

; exp(sol2a$par([l]

alpha
1.908095
alpha
2.528512

Next, we fit the zero-truncated Poisson model in JAGS, where it’s particularly easy to fit this
model, using the T () syntax. We are reminded that by zero truncating we lost the data from almost
300 sites in our simulated data set. We index sites by j, to emphasize that we assume a different set
of sites in each of the three data sets.

Bundle data

str(bdata <- list(C2 = ztC2, nsites2 = length(ztC2), selev2 = selev2[C2 > 0]))

List of 3
5 g2 : int [1:728] 11 13 5 9 8 7 14 6 7 6
$ nsites2: int 728
$ selev2 : num [1:728] —-0.799 -0.798 -0.798 -0.797 -=0.797

Write JAGS model file
cat (file = "model2.txt", "
model {

Priors and linear models
alpha ~ dunif(-10, 10)
mean.lam <- exp(alpha)
beta ~ dnorm(0, 0.0001)

Abundance intercept on log scale
Abundance intercept on natural scale
Slope on elevation

Zero-truncated Poisson likelihood for data set 2

for (j in l:nsites2) {
C2[j] ~ dpois(lambdal[j])T(1,) # truncation is accommodated easily
log(lambdal[j]) <- alpha + beta * selev2[j]

uj

Initial values
inits <- function() {list (alpha = runif(l), beta = rnorm(1))}

Parameters monitored
params <- c("mean.lam", "alpha", "beta")

MCMC settings

ni <- 6000; nb <- 2000; nc <- 4; nt <- 4; na <- 1000

Call JAGS from R (ART <1 min), check convergence and summarize posteriors

out2 <- jags(bdata, inits, params, "model2.txt", n.iter = ni, n.burnin = nb,
n.chains = nc, n.thin = nt, n.adapt = na, parallel = TRUE)

jagsUI::traceplot (out2) # Not shown

print (out2, 2)

mean sd 2.5% 50% 97.5% overlap0 f Rhat n.eff
mean. lam 1.91 0.07 1.76 1.90 2.05 FALSE 1 1 1219
alpha 0.64 0.04 0.57 0.64 0.72 FALSE 1 1 1226
beta -2.04 0.07 -2.18 -2.04 -1.90 FALSE 1 1 1887

20.3 Fitting models to the three individual data sets first 485

We compare the likelihood and the Bayesian estimates.

Compare truth with likelihood and sia solutions
comp <- cbind(truth = truth, tmp2([,1:2], out2$summary[2:3, 1:2])
colnames (comp) [3:5] <~ c("SE(MLE)", "Post.mean", "Post.sd")
print (comp, 3)

sian solt

truth MLE SE (MLE) Post.mean Post.sd
log.lam 0.693 0.646 0.0385 0.644 0.0391
beta -2.000 -2.035 0.0709 -2.039 0.0719

That looks good!

20.3.3 Fitting the cloglog Bernoulli GLM in R and JAGS to data set 3

Finally, we fit the Bernoulli model with cloglog link to the detection/nondetection data. This means
that the parameters of the model describe the relationship between an underlying abundance process
and the elevation covariate.

noulli cloglog link for de

summary (fm3 <- glm(y ~ selev3, family :ybinomial(link =
exp (coef (fm3) [1])

'cloglog")))
Estimate of lambda on natural scale from binary data

Coefficients:

Estimate Std. Error =z value Pr(>|z])
(Intercept) 0.71081 0.04169 17,03 < 2e=1B FEE
selev3 -1.98144 0.09499 -20.86 <2e-16 ***
(Intercept)
2.035632

And the DIY likelihood solution.

Definition of NLL for Bernou
NLL3 <- function (param, y, x) {
alpha <- param[1]
beta <~ param[2]
lambda <- exp(alpha + beta * x)
psi <- l-exp(-lambda)
LL <- dbinom(y, 1, psi, log = TRUE)
return (-sum (LL))

}

L. contribution for each datum
NLL for all data

Min ze NLL
inits <- c(alpha = 0, beta = 0)
so0l3 <- optim(inits, NLL3, y =y, x = selev3, hessian = TRUE, method = 'BFGS')

tmp3 <- get MLE(sol3, 4)

MLE ASE LCL.95 UCL.95
alpha 0.7108 0.04214 0.6282 0.7934
beta -1.9815 0.09682 -2.1712 -1.7917

And finally JAGS. In the model, we now index sites by k.

486 Chapter 20 Integrated models

Bundle data

str(bdata <- list(y =y, nsites3 = nsites3, selev3 = selev3))

List of 3
Sy : num [1:2000] 1 11111
$ nsites3: num 2000
$ selev3 : num [1:2000] —-0.798 -0

Write JAGS model file
cat(file = "model3.txt", "
model {

Priors and linear models
alpha ~ dunif(-10, 10)
mean.lam <- exp(alpha)
beta ~ dnorm(0, 0.0001)

Likelihood for data set 3

for (k in l:nsites3){
y[k] ~ dbern(psilk])
cloglog(psi[k]) <- alpha + beta *

1031,

.794 —0.794 —-0.794 —-0.792 ...

Abundance intercept on log scale
Abundance intercept on natural scale
Slope on elevation

selev3[k]

Alternative implementation of same model for data set 3

y[k] ~ dbern(psi[k])
psif[k] <= 1 - exp(-lambda3[k])

log(lambda3(k]) <- alpha + beta * selev3[k]

")

Initial values

inits <- function(){list(alpha = runif(l), beta = rnorm(l))}

Parameters monitored

params <- c("mean.lam", "alpha", "beta")

MCMC settings

ni <- 6000; nb <- 2000; nc <- 4; nt <= 4; na <- 1000

Call JAGS from R (ART 1.2 min), check convergence and summarize posteriors

out3 <- jags(bdata, inits, params,

"model3. txt", n.iter = ni, n.buEnin = nb,

n.chains = nc, n.thin = nt, n.adapt = na, parallel = TRUE)

jagsUI: :traceplot (out3)
print (out3, 3)

mean sd 2.5%
mean.lam 2.040 0.084 1.885
alpha 0.712 0.041 0.634
beta -1.986 0.095 -2.177

Not shown

50% 97.5% overlap0 f£ Rhat n.eff
2.038 2.211 FALSE 1 1.002 1439
0.712 0.794 FALSE 1 1.002 1413

-1.985 -1.804 FALSE 1 1.002 1240

Compare truth with likelihood and Bayesian solutions

comp <- cbind(truth = truth, tmp3[,
colnames (comp) [3:5] <- c("SE(MLE)",
print (comp, 3)

truth MLE SE(MLE)
log.lam 0.693 0.711 0.0421
beta -2.000 -1.981 0.0968

We find a nice numerical agreement.

:2], out3$summary[2:3, 1:27])
"Post.mean", "Post.sd")

Post.mean Post.sd
0.712 0.0411
-1.986 0.0948

20.4 Fitting the integrated model to all three data sets simultaneously 487

20.4 Fitting the integrated model to all three data sets simultaneously

Now that we understand the component models for each data set and know how to code them up,
we are ready to fit the IM. We fit the full integrated SDM which assumes a shared abundance pro-
cess, but accommodates the three different types of observation processes in the three simulated
data sets. There is no canned R function for us to fit this IM, so we work directly with our own
negative log-likelihood function that we then maximize for the three data sets simultaneously.
After that, we fit the same model with JAGS, NIMBLE, Stan, and TMB.

20.4.1 Fitting the IM with a DIY likelihood function

Under an assumption of statistical independence the joint likelihood for the three submodels is sim-
ply the product of the three single-data likelihoods:

Ljoint = L1 L, L3

Of course, we usually work with the negative of the log of the likelihood and for this, we have
a sum rather than a product. Hence, the objective function to minimize for our IM is this:

NLLjoim = - (LL1 + L1, +LL3) =—LLi—LL,—LL;
Let’s try this out.

Definition of the joint NLL for the integrated model
NLLjoint <- function(param, yl, x1, y2, x2, y3, x3) {
Definition of elements in param vector (sh between data sets)

alpha <- param[1l]
beta <- param[2]
Likelihood for the Poisson GLM for data set 1 (yl1, x1)
lambdal <- exp(alpha + beta * x1)
L1 <- dpois(yl, lambdal)
Likelihood for the ztPoisson GLM for data set 2 (y2, x2)
lambda2 <- exp(alpha + beta * x2)
L2 <- dpois(y2, lambda2)/(l-ppois (0, lambda2))
Likelihood for the cloglog Bernoulli GLM for data set 3 (y3, x3)
lambda3 <- exp(alpha + beta * x3)
psi <- l-exp(-lambda3)
L3 <- dbinom(y3, 1, psi)
Joint log-likelihood and joint NLL: here you can see that sum!
JointLL <- sum(log(Ll)) + sum(log(L2)) + sum(log(L3)) # Joint LL
return (-JointLL) # Return joint NLL

log-linear intercept
log-linear slope

}

Minimize NLLjoint

inits <- c(alpha = 0, beta = 0)

solJoint <- optim(inits, NLLjoint, yl = Cl, x1 = selevl, y2 = ztC2, x2 = selev2[C2>0],
y3 =y, x3 = selev3, hessian = TRUE, method = 'BFGS"')

Get MLE and asymptotic SE and print and save
(tmp4 <- get MLE (solJoint, 4))
diy est <- tmp4[,1]

MLE ASE LCL.95 UCL.95
alpha 0.6860979 0.01851556 0.6498074 0.7223884
beta -1.9703732 0.03522001 -2.0394044 -1.9013420

Nice. .. our first IM “by hand”!

488 Chapter 20 Integrated models

20.4.2 Fitting the IM with JAGS

For the IM in JAGS, we simply stack the three GLMs inside of the same BUGS model statement
and choose the same names for the parameters alpha and beta in all of them. This is what
defines the joint likelihood as a product of the single-data likelihoods. Hence, even though you
don’t see it so clearly, the likelihood of this model is Ly, = L;L;L3, where L;, Ly, and L; are,
respectively, the likelihoods of the Poisson GLM for the count data set 1, of the zero-truncated
Poisson GLM for data set 2, and of the Bernoulli GLM for the detection/nondetection data set 3.
Note again the different indices used for sites in the three data sets to emphasize that we assume

they do not overlap.

Bundle data

str (datalist <- 1list(Cl =Cl, C2 = ztC2, y =y,

nsites3 = nsites3, selevl = selevl, selev2 = selev2[C2>0], selev3 = selev3d))

List of 9
$ C1 : int [1:500] 8 7 6 8 12 18 5 8 7 8 ...
$ C2 : int [1:728] 11 13 5 9 8 7 1 4 6 7 6...
Sy : num [1:2000] 1 1 1 1 1 1 1 1 1 1
$ nsitesl: num 500
$ nsites2: int 728
$ nsites3: num 2000
$ selevl : num [1:500] -0.8 -0.797 —-0.795 -0.788 —0.782
$ selev2 : num [1:728] —-0.799 -0.798 -=0.798 —=0.797 -0.797
$ selev3d : num [1:2000] -0.798 —-0.794 -0.794 -0.794 -0.792

Write JAGS model file
cat(file = "model4d.txt", "
model {

#
alpha ~ dunif(-10, 10)
mean.lam <- exp(alpha)
beta ~ dnorm(0, 0.0001)

Priors and linear models: shared for models of all three data sets

Abundance intercept on log scale
Abundance intercept on natural scale
Slope on elevation

Joint likelihood: Note identical alpha and beta for all data sets

1

Likelihood portion for data set 1l: regular counts

for (i in l:nsitesl){
Cl[i] ~ dpois(lambdalli])

log(lambdal[i]) <- alpha + beta * selevl[i]

}

Likelihood portion for data set 2: zero-truncated counts

for (j in l:nsites2){
C2[j] ~ dpois(lambda2([j])T(1,)

log(lambda2[j]) <- alpha + beta * selev2[j]

}

Likelihood portion for data set 3: detection/nondetection

for (k in l:nsites3) {
y[k] ~ dbern (psil[k])

cloglog(psi[k]) <- alpha + beta * selev3[k]

}

}
|

nsitesl = nsitesl, nsites2 = length(ztC2),

20.4 Fitting the integrated model to all three data sets simultaneously

Initial values

inits <- function() {list (alpha = runif (1), beta = rnorm(1l))}

Parameters monitored

params <- c("mean.lam", "alpha", "beta")

MCMC settings
na <- 1000; ni <- 6000; nb <- 2000; nc <- 4; nt <- 4

Call JAGS from R (ART 170 sec), check cor ce and summarize posteriors

489

out4 <- jags(datalList, inits, params, "modeld.txt", n.iter = ni, n.burnin = nb,

n.chains = nc, n.thin = nt, n.adapt = na, parallel = TRUE)
jagsUI: :traceplot (outd)
print (outd4, 2)
jags_est <- outd4$summary[2:3,1]

mean sd 2.5% 50% 97.5% overlapO f Rhat n.eff
mean.lam 1.99 0.04 1.91 1.99 2.06 FALSE 1 1 4000
alpha 0.69 0.02 0.65 0.69 0.72 FALSE 1 1 4000
beta -1.97 0.04 -2.04 -1.97 -1.90 FALSE 1 1 4000

We compare the likelihood and the Bayesian solutions with truth.

Compare truth with likelil
comp <- cbind(truth = truth, tmp4[,1:2], outd$summary[2:3, 1:2])
colnames (comp) [3:5] <- c("SE(MLE)", "Post.mean", "Post.sd")

print (comp, 3)

d and Bayesian solutions

truth MLE SE (MLE) Post.mean Post.sd
log.lam 0.693 0.686 0.0185 0.686 0.0184
beta -2.000 =1.970 00352 =1, 971 0.0353

As almost always, we get numerically extremely similar estimates from maximum likelihood
and Bayesian posterior inference for a model with vague priors and provided that the sample size is

large with respect to the complexity of the model.

20.4.3 Fitting the IM with NIMBLE
NIMBLE code for the model is available on the book website.

20.4.4 Fitting the IM with Stan

Also for Stan, we can use the same bundled data. Here’s the model code, which looks very similar

to our JAGS model.

RSB)
490 Chapter 20 Integrated models

cat (file = "modeld.stan",
"data {

int nsitesl;
int nsites2;
int nsites3;
array[nsitesl] int C1;
arrayl[nsites2] int C2;
array[nsites3] int y;
vector[nsitesl] selevl;
vector [nsites2] selev2;
vector [nsites3] selev3;

}

parameters {
real alpha;
real beta;

}

model {
vector [nsitesl] lambdal;
vector [nsites2] lambda2;
vector [nsites3] psi;

// Priors
alpha ~ uniform(-10, 10);
beta ~ normal (0, 100);

// Likelihood
for (i in l:nsitesl) {
lambdal [i] = exp(alpha + beta * selevl[i]);
Clal ~ poisson (lambdal fily):
}
for (). in lensiftes?) [
lambda2[j] = exp(alpha + beta * selev2[j]);
€25 = poisson (lambda2ifigl): Tl
}
for (k in l:nsites3){
psi[k] = inv _cloglog(alpha + beta * selev3[k]);
y[k] ~ bernoulli (psilk]);
}
}
generated quantities {
real mean lam = exp (alpha);

}
")

Parameters monitored

params <- c("mean_lam", "alpha", "beta")

HMC settings

ni <- 2000 ; nb <- 1000 ; nc <-4 ; nt <~ 1

1 STAN (ART 90/45 sec), assess convergence and print results table

system. time (

outd.stan <- stan(file = "modeld.stan", data = datalist,

warmup = nb, iter = ni, chains = nc, thin = nt))
rstan::traceplot (outd.stan) # not shown
print (outd4.stan, dig = 3) # not shown

stan_est <- summary(out4.stan)S$summary(1:2,1]

20.4 Fitting the integrated model to all three data sets simultaneously 491

20.4.5 Fitting the IM with TMB

Again we can use the same data bundle.

cat (file = "modeld.cpp",
"#include <TMB.hpp>

template<class Type>
Type objective function<Type>::operator () ()
{
//Describe input data
DATA INTEGER (nsitesl);
DATA INTEGER (nsites2);
DATA INTEGER (nsites3);
DATA VECTOR(C1) ;
DATA VECTOR (C2) ;
DATA VECTOR (y) ;
DATA VECTOR (selevl) ;
DATA VECTOR (selev2) ;
DATA VECTOR (selev3);

//Describe parameters
PARAMETER (alpha) ;
PARAMETER (beta) ;

Type LL = 0.0;

vector <Type> lambdal (nsitesl);
vector <Type> lambda2 (nsites2);
vector <Type> psi(nsites3);

for (int i=0; i<nsitesl; i++){
lambdal (i) = exp(alpha + beta * selevl(i));
LL += dpois(Cl (i), lambdal (i), true);

}

for (int j =0; j<nsites2; j++){
lambda2 (j) = exp(alpha + beta * selev2(j));
// Truncated Poisson

//Initialize log-likelihood at 0

LL 4+= log(dpois(C2(j), lambda2(j))/ (1 - ppois(Type(0), lambda2(j)))):;

}
for (int k=0; k<nsites3; k++){

psi(k) =1 - exp(-exp(alpha + beta * selev3(k))); //inverse cloglog

LL += dbinom(y(k), Type(l), psi(k), true):;
}

Type mean lam = exp (alpha);
ADREPORT (mean lam) ;

return -LL;

"

Cogbals e
. R
492 Chapter 20 Integrated models 20.5 What do we gain by analyzing the joint likelihood in our analysis? 493

Compile and load TMB functior .
compiie("model4 cpp™) ## Point estimates
) : truth MLE(Poisson) MLE (ZTPois)

load

dyn.load (dynlib ("model4")) log. lam 0. €93 g MLE (cloglogBern) MLE (integrated)
. * . 0.646 0.711
Provide dimensions and starting values for parameters beta =2.000 -1.961 ~-2.035 =1.881 —S ' (9556
params <- list(alpha = 0, beta = 0) -970
Standard errors
Create TMB object ASE (Poisson) ASE(ZTPois) ASE(
cloglogB i
outd.tmb <- MakeADFun (data = datalist, parameters = params, alpha 0.0367 0.0385 ’ g 222)1 ASE(integrated)
DLL = "model4", silent = TRUE) beta 0.0670 0.0709 5. 5568 8'8185
: ¢ .0352
Optimize TMB object, print and save results We don’t see much difference . .
- £ among the point estimates. However
_ . _ _ - " . we see that th
opt <- optim(outd.tmb$par, fn = outd.tmb$fn, gr = outd.tmbSgr, method BFGS") the regular counts has the greatest precision among the single-data modc’:ls followed b etlfnto (136] fl(l)r
2
y that for the

(tsum <- tmb_ summary (outd.tmb))

zero- i . .
trb est < toamli2,1] truncated counts, while that for the detection/nondetection data comes last. This makes intui-

tlvle sen;ef' since we re?d}lce the information by going from regular counts to tossing out the zeroes
| ‘ J only and inally quantizing the data. In our simulation, this information loss is not compensated f
20.4.6 Comparison of the parameter estimates for the IM by our simulated increase in sample size. P)

R Remermber that v have fewer ‘ . bhe IM has the greatest precision of all, since it uses the information from all three data sets in
mbination. We also make a plot to compare the point estimates and CRIs of models 1-4

engines now, since there is no canned function in R to fit our IM. .
& (Fig. 20.4).

imates from the five engines

Compare point es
comp <- cbind(truth = truth, DIY =diy est, JAGS = jags_est, NIMBLE = nimble_est,
Stan = stan_est, TMB = tmb_est)

print (comp, 4) Abundance i
| ntercept Abundance slope
truth DIY JAGS NIMBLE Stan TMB : 0.9 1.8 -
log.lam 0.6931 0.6861 0.6855 0.686 0.6856 0.6861)
beta -2.0000 -1.9704 -1.9710 -1.970 -1.9715 -1.9704
. . e 0.8 1
We see what we see so often: numerically, these estimates are practically indistinguishable. -1.9 1
0.7 4@--meemmeec e . + 20+ 4 ____________________________ o
20.5 What do we gain by analyzing the joint likelihood in our analysis? *
. . . 0.6
We compare all the MLEs for models 1-4 to see how point estimates and asymptotic standard 6 -2.1 7
errors change for different data types and for the single-data models and the joint-likelihood model.
Since we have already seen the similarity between the likelihood and the Bayesian inferences, 0.5 - 292
we’re not going to bother doing this for both, but restrict this comparison to our likelihood - cl\| c'f) — <. ‘ I : _
inferences. o = — L A N ™ =
, z ° 8 3 o © o) B °
Compare truth with MLEs only from all 4 models (stacked sideways) ; o o o € -8 -8 3 2
print (cbind (truth = truth, "MLE (Poisson)"= tmpl([,1], "MLE(ZTPois)" = tmp2([,1], = = = s s s § E
"MLE (cloglogBern)" = tmp3([,1], "MLE (integrated)" = tmp4l[, 11), 3) £ "E
Compare ASEs from all 4 models (stacked sideways) FIGURE 20.4
print (cbind ("ASE (Poisson) " = tnpl[,2], "ASE(ZTPois)" = tmp2[,2], "ASE(cloglogBern)” = tmp3[,21, Point estimates (MLEs) and 95% Cls for the intercept and the slope parameter in the abunda del in al
" - "= 21, ,) nce mo
ASE (integrated) tmp4d [, 2]), 3) | four models (dotted horizontal lines show truth). For both parameters, the precision of the estimates is sl

greatest when we use all the information available, which is what we achieve by the integrated model

| ‘—4__——¥

494 Chapter 20 Integrated models

Compare MLEs and ASEs from all 4 models (Fi

par (mfrow = c(1, 2), mar = c(12, 6, 5, 3), cex.lab= 1.5, cex.axis = 1.5, cex.main = 1.8)
Plot for abundance i cept (on log scale)

> ntercept (o

all.mles <- c(tmpl[1,1], tmp2([1,1], tmp3(1,1], tmp4[1l,1])

all.lower.CL <- c(tmpl[1l,3], tmp2[1,3], tmp3([1,3], tmp4[l,3])
lr

all.upper.CL <- c(tmpl(1,4], tmp2([1,4]1, tmp3[1,4], tmpd[l,4])
plot(l:4, all.mles, pch =16, xlab="', ylab="'"', axes = FALSE, frame = FALSE,
main = 'Abundance intercept', cex = 2, ylim=c (0.5, 0.9))

axis(l, at =1:4, c('Model 1', 'Model 2', 'Model 3', 'Integrated model'), las = 2)
segments(l:4, all.lower.CL, 1:4, all.upper.CL, lwd = 1.5)

axis (2, las = 1)

abline(h = log(2), lwd =1, lty = 3)

E

Plot for abu

slor (on log scale)

all.mles <- c(tmpl[2,1], tmp2[2,1], tmp3(2,1], tmp4d[2,1])
all.lower.CL <- c(tmpl[2,3], tmp2[2,3], tmp3[2,3], tmpd[2,3])
all.upper.CL <- c(tmpl[2,4], tmp2([2,4], tmp3[2,4], tmp4[2,4])

plot(l:4, all.mles, pch =16, xlab=""', ylab="'"', axes = FALSE, frame = FALSE,
main = 'Abundance slope', cex = 2, ylim=c(-2.2, -1.8))
axis(l, at =1:4, c('Model 1', 'Model 2', 'Model 3', 'Integrated model'), las = 2)

segments(1:4, all.lower.CL, 1:4, all.upper.CL, lwd = 1.5)
axis(2, las =1)
abline(h = -2, lwd =1, lty = 3)

In Fig. 20.4, we see that the joint likelihood model is best in terms of the precision for both
parameters in our model. We note that all estimators (i.e., all models) should produce unbiased esti-
mates. Hence, it would be wrong to say that the differences between point estimates and the true
values represented by the dotted lines represent bias. To gauge the unbiasedness of an estimator,
we would have to repeat the whole data simulation/data analysis cycle a large number of times
(e.g., 100 or 1000 times) and then look at the distribution of these estimates. Such a simulation
could easily be done, especially with MLEs, since that method is much faster than MCMC.

The IM in this chapter does not illustrate another common advantage of this model class:
namely that additional parameters may become estimable. For instance, in an IPM with a time
series of counts that is combined with capture—recapture data we can estimate productivity, which
is not an identifiable parameter in separate analyses for either data set alone (Besbeas et al., 2002;
Schaub & Kéry, 2022).

20.6 Summary and outlook

Now you understand the principle of data integration by working with a joint likelihood: we first
identify some underlying process that is shared among the different data sets and can be expressed
by one or several parameters, and then describe the differences between the different data sets that
typically lie in the observation process. In our case, even though at the start we had abundance data
(i.e., counts) and detection/nondetection data, we assumed an underlying abundance process that is
shared for all three data sets. Then, we chose a likelihood that represented the different observation
processes that underlie the three different data sets: a regular Poisson PMF for the proper counts, a
zero-truncated Poisson PMF for the data produced by the “lazy birders,” and a Bernoulli PMF with

20.6 Summary and outlook 495

cloglog link for the detection/nondetection data. Assuming statistical independence, the joint likeli-
hood is the product of the likelihoods of each individual data set. Maximizing it results in parame-
ter estimates that are most likely with respect to all data sets in the model.

Seeing that the joint likelihood under independence is a product of the s%ngle—@atallikelih.oods is
easiest when working with DIY maximum likelihood, because here the joint 'hkehhood is very
clearly apparent. However, in practice for most non-statisticians it is much easier to spemfy that
same joint likelihood for an IM in the BUGS language or even with Stan or TMB, where we simply
describe the individual-data likelihoods within the same model statement.

Opportunities for adopting such IMs are superabundant in eco'log'y and wjldlife managem.ent.
Clearly, we expect to see more and more models that apply the pr1n01.ples of integrated modepr}g.
The power and flexibility of the BUGS language makes it almost trivially easy to deﬁne‘th'e joint
likelihood for such an IM. IMs are almost always custom models to some degree and it is l‘lere
where the new-found modeling freedom that especially BUGS software gives you will be particu-

larly exciting for you.

